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1. INTRODUCTION

It is the aim of a series of preceding papers [5-9] to treat some represen
tation and convergence problems arising in the theory of cardinal
logarithmic spline functions by real and complex integral transform methods.
In particular, the Laplace and the inverse Mellin transform turned out to be
pliable and versatile tools for these purposes. It is the aim of the present note
to deal with cardinal exponential splines (in the sense of Schoenberg
[11, 12]) by means of an integral representation formula for the basis splines
that has been already mentioned in [9]. The formula will be established in
Theorem 1 via the inverse Laplace transform. As a consequence, it implies a
contour integral representation for the cardinal exponential splines
(Theorem 3) which is the central result of this note. The line integral
involved can be evaluated by an application of the calculus of residues
(Theorem 4). In this way, for instance, the pointwise convergence of the
cardinal exponential spline interpolants on the whole real line IR towards the
exponential function when their degree tends to infinity will be established
without any difficulty (Theorem 6). Thus, the asymptotic behaviour of the
cardinal exponential spline interpolants and the cardinal logarithmic splines
turns out to be totally different. In both cases, however, the contour integral
representation method exhibits as an effective technique.

2. TRUNCATED POWER FUNCTIONS

Let m ~ 1 be a fixed natural number and suppose that z E C belongs to
the complex open right half-plane Re z > O. By a change of variable the
identity

j. -zx m d 1 ( ) m!e x x = -----m+T r m + 1 =-----m+T
11 z z

+
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obtains, i.e., the one-sided Laplace transform of the monomial function
x ""+ xm at the point z E C equals to m!/ zm + 1 provided that Re z > O. If we
denote, as usually, for each mappingf: IR -4 IR by f+ = sup(f, 0) its positive
part, an application of the inversion theorem for the bilateral Laplace
transform furnishes the integral representation formula for the truncated
power functions

(c >0) (1)

which is valid for all x E IR. It should be observed that in (I) the integral
along a straight line in the open right half-plane parallel to the imaginary
axis is independent of the particular choice of c > O. From (1) one also
concludes that the integral representation formula

m m (_l)m+lm! d+ioo eXz

(-x)+ = ((-x)+) = 2' J mn dz
7rl d-ioo Z

(d <0) (2)

holds for all x E IR and that the line integral occurring in (2) is independent
of the choice of the constant d <0 again.

It should be emphasized that the fundamental integral representation
formulae (I) and (2) of the truncated power functions IR 3 x ""+ x~ E IR + ,
R 3 x ""+ (-x)~ E IR + (m E IN X) along vertical lines in the open right, resp.
left, half-plane form an essential ingredient of our approach to the cardinal
exponential splines. For another kind of integral representation formula, see
Section 8.

3. BASIS SPLINES

For each m E IN X let ism(IR; l) denote the vector space over the field C of
all complex cardinal spline functions of degree m on IR having (equidistant)
knots at the integer points n E l on the real line IR, i.e., the vector space of
all complex-valued functions s E <i€"m-l (IR) such that the restriction of s to
each compact subinterval [n, n + I] (n E l) of IR is a polynomial of degree
~m with complex coefficients.

Obviously, for each k E l, the truncated power function

IR 3 x ""+ (x - k)~ (3)

belongs to the space 6 m(lR; l). In particular, the so-called forward basis
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spline of degree m given by the linear combinations of the splines (3) and
their reflections

1 ", k (m + 1) ( )mbm:1R3x CV4 -, 2... (-1) k x-k+,
m. O<;k<;m+ 1

bm:1R3XCV4(-1)~+1 '\' (_It(m+l)(k_X)~
m. O<;k<;m+ 1 k

is an element of 6 m(lR; Z) and satisfies the conditions

(4)

(4')

Supp(bm) S; [0, m + 1], (5)

(c> 0), (6)

Conversely, any function bm E 6 m(lR; Z) that satisfies the conditions (5) is
given by (4) or (4'). In view of (4), (4') and (1), (2) we obtain the following
result:

THEOREM 1. For each mE IN x the basis spline bm E 6 m(lR; Z) ofdegree
m admits the integral representations

, k (m + 1) 1 c+iro e(x-klz

bm(x) = 2. (-1) k -2·f m+l dz
O<;k<;m+l m c-iro Z

(
m+ 1) 1 d+iro e(x-klz

b (x) = )~ (_l)k - dzm ~ • m+l
O<;k<;m+ 1 k 2m t-iro Z

(d <0), (6')

which are valid for all x E IR. The line integrals occurring in (6) and (6') are
independent of the particular choices of the real constants c > 0 and d <0,
respectively.

COROLLARY. For all x E IR the homogeneous linear difference equation

(7)

holds.

The importance of the basis spline bm lies in the fact that its translates
within the grid Z form a base of the complex vector space 6 m(lR; Z). More
precisely, for any cardinal spline function Sm E 6 m(lR; Z) there exists a
unique bi-infinite sequence (Cn)nEz of complex numbers such that the
representation formula

s =) C b (. - n)m ~ n m
nEZ

(8)
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holds. In view of the "small support" condition pointed out in (5) there
occurs in (8) only a finite number of summands 1= 0, i.e., there is no
convergence problem with respect to the bi-infinite series (8).

For an account of basis splines the reader is referred to the fundamental
paper by Curry and Schoenberg [1] and, for instance, to the recent book by
De Boor [2] which emphasizes the computational aspects of this notion.

4. CARDINAL EXPONENTIAL SPLINES AND

THEIR CONTOUR INTEGRAL REPRESENTATIONS

Let h 1= 0 denote a fixed complex number and consider the homogeneous
linear difference equation of the first order with constant coefficients

f(x+ 1)-hf(x)=O (x E IR). (9)

It follows from (8) that sm E 6 m(lR; 1) is a solution of (9) if and only if the
coefficients (Cn)nEl of sm admit the form C n = Co . hn for all n E 1, i.e., if
and only if sm may be represented by the formula

Sm = Co . I hnbm(· - n),
nEE

(10)

where Co E C denotes an arbitrary constant. Following the terminology of
Schoenberg [11, 12], in this case sm E 6 m(lR; 1) is called a cardinal
exponential spline of degree m and weight h. In this connection also see
Greville et al. [3].

A short computation based on Theorem 1 and the binomial theorem
furnish

THEOREM 2. For each number mE IN x the cardinal exponential splines
sm E 6 m(lR; 1) of degree m and complex weight h 1= 0 admit the represen
tation formulae

(
l)m+l 1 c+ioo eXz

sm(x) = Co 1-- -. I J (he-ZY/ilTIdz
h 2m nEE c-ioo Z

(
1 )m+l 1 d+ioo eXz

sm(x) = Co I--h -2. If (he-T/ilTIdz
m nEE d-ioo Z

(c> 0),

(d <0)

(11)

(11 ')

for all x E IR. In (11) and (11 '), Co E C denotes an arbitrary constant.
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Suppose that h E C x does not belong to the unit circle U =

{w E C llwl = I}. In the case when Ihl > 1, choose real numbers c, c' such
that

o< c' < log Ih I < c

holds. In the other case when 0 <Ih I< 1 assume that the real numbers c, c'
satisfy the conditions

c' < log Ih I <c <o.

In any case, introduce the vertical lines

L = {z E C I Re z = c}, L' = {z E C IRe z = c'}.

Then L U L' forms the boundary of a closed vertical strip in the open right,
resp. left, half-plane with the compact basis [c', c] on the real axis.
Proceeding as in [9], let Land L' be equipped with a positive orientation
such that their juxtaposition

Lo=L V L' (12)

forms a circuit in the one-point compactification of C having the topological
index IndLo(log Ihi) = 1 with respect to the point log Ih I on the real axis of C.
Then let the bi-infinite series (11) resp. (11') be decomposed into two parts
such that the first one includes the summation over all numbers n E IN and
the corresponding line integrals are along L whereas the second part is
concerned with the summation over all integers n::;;; -1 and the
corresponding line integrals are along L'. In view of the uniform convergence
of both sums with respect to the variable z it is permissible to interchange
the order of integration and summation in both cases. If we put the two parts
together after the break and if we introduce for all triplets (m, h, x) E
IN x X (C x - U) X IR the meromorphic function

e(x+l)Z
F . z N4 --:-::--....,..-:---:::...,..,m.h.x· (eZ _ h) zm+ 1 '

(13 )

then by Theorem 2 supra the central result of this note is established.

THEOREM 3. For the cardinal exponential splines sm E 6 m(lR; Z) of
degree m E IN x and weight h E (; x - U the contour integral representation
formula

(14)(x E IR)(
1)m+l 1

sm(x) = Co 1 - h 2ni to Fm.h.Az) dz

holds. The kernel Fm.h.x is defined by (13), the contour L o is given according
to (12) and Co E C denotes an arbitrary constant.
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The line integral occurring in (14) along the circuit L o can be evaluated
by an application of the calculus of residues. For this aim we observe that
the meromorphic function (13) admits a pole of order m + I at the origin of
C and simple poles at the zeros (zk(h)ha of the function Z ~ eZ

- h. Since
we have

(kE Z)

an application of Cauchy's residue theorem yields the identity

(
I)m+l,

sm(x) = Co 1- h fe.z Res(Fm,h,x' zk(h))

for all x E IR. Note that zk(h) *0 for all k E Z and that

(15)

eXZk(hl

Res(Fm,h,x' zk(h)) = z~+ l(h)

holds for all triplets (m, h, x) E IN x X (C x - U) X IR. Since the bi-infinite
sequence (zk(h ))kel of equidistant poles is located on the straight line
{w E C !Re w = log Ihi} parallel to the imaginary axis of C, Fig. 1 turns out
in the case Ihi> I (and similar in the case IhI< 1).

1m ,
,z2(h) L

Z1 (h)

zo(h)

CO lo$lhl c Re

~Z_l (h)
I
0,,
tz _2 (h)
0

0

I

L' :
t2_ 3 (h),

Lo

FIGURE 1



CARDINAL SPLINES AND LAPLACE TRANSFORM

As a consequence of Theorem 3, the identity (15) establishes

267

THEOREM 4. Let the numbers m E IN x and h E C x - U be fixed. Then
the cardinal exponential splines sm E 'Sm(lR; Z) of degree m and weight h
admit the form

(xEIR), (16)

where Co E C denotes an arbitrary constant.

5. CARDINAL EXPONENTIAL INTERPOLANTS

Taking into account the homogeneous linear difference equation of the
first order (9) that is satisfied by the cardinal exponential splines Sm of
degree m E IN x and weight h =1= 0 the normalization condition

(17)

exhibits to be necessary and sufficient that sm verifies the interpolation con
dition

(n E Z)

on the grid Z. In this case, Sm E Gm(lR; Z) is called a cardinal exponential
spline interpolant of degree m with respect to the bi-infinite geometric
sequence (hn)nEz'

THEOREM 5. Let the numbers m E IN x and h E ex - U be given. There
exists one and only one cardinal exponential spline interpolant Sm of degree
m with respect to (hn)nEZ if and only if the condition

(18)

holds. In this case Sm admits the form

(19)
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In the case when Co *0 by comparing the identities (10) and (16) and
using (5) and (7) we obtain

1
(h _1)m+l Pm(h).

(m E ft',P) (20)

Therefore the functions qm+ 1 do not possess more than m - 1 zeros *0 in
the open subset C - {l} of C. Let Tn = IR +ein (a E ] -n, +n]) denote an
arbitrary closed half-line in the complex plane C that starts from the origin
of C in the direction a. Choose a ho10morphic logarithm in the complex
plane cut along the ray Tn' i.e., in the open set C - Tn (cf. Fig. 2 below).
Then it follows from (18) that the derivative of qm + 1 satisfies

(21 )

for all numbers hE C - (UU Tn)' In view of (20) the identity (21) can be
extended to all numbers hE C - {I}. Let ho denote the lowest zero of the
polynomial Pm of degree m with real coefficients located on the closed left
real half-line IR _ = {r E IR t r <Of. Then we obtain by combining (20) and
(21) the identity

(22)

for all m E IN x. Consequently, the set of all zeros of the functions
(qm+ l)meNX is located on the closed half-line IR _. Thus, by Theorem 5 supra,
there exists for all numbers mE IN x and hE C - (UU IR _) one and only

1m

Re

FIGURE 2
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one cardinal exponential spline interpolant Sm of degree m with respect to the
geometric sequence (hn)nez that is given explicitly by (19).

The polynomials (Pm)mefN x are closely related to the exponential
Euler-Frobenius polynomials (cf. Schoenberg [11,12)). It is the aim of a
forthcoming paper to establish more details of these polynomials by the
integral transform method.

7. THE CONVERGENCE THEOREM

In view of the identities eXZk(hl = (eZk(hly = hXe27rikx (k E Z) that hold for
all hE C - To: (a E )- n, +n)) the pointwise convergence theorem of
Schoenberg [11,12) for the cardinal exponential spline interpolants (sm)mefNx

as their degree m tends to infinity can easily established by Theorem 5 supra.
Indeed, if r(h) = sup(lzo(h)/z_l(h)l, Izo(h)/Zl(h)l) there exists by (19) a
constant M h'> °such that the estimate

holds for all x E IR.

THEOREM 6. Let the weight h E C - (U U IR _) be given. Then the
convergence property

lim sm(x) = hX

m~oo

holds for all points x E IR.

In strong contrast to the behaviour of the cardinal exponential spline inter
polants (sm)mefNX on the line IR the sequence (8m)mefNx of cardinal logarithmic
spline functions converges pointwise on the open right half-line IR ~ only at
the sequence of those points x E IR ~ where the convergence holds trivially by
the interpolation property of the splines (8m)mefNx ("Newman-Schoenberg
phenomenon"; cf. the papers [5, 7, 9D. In this case a bi-infinite sequence of
simple poles *0 located on the imaginary axis of C is responsible for the
occurrence of the pointwise convergence phenomenon.

8. SOME OTHER INTEGRAL REPRESENTATION FORMULAE

In [9) we have proved that the truncated power function t""-+ (1 - t)~

admits for each exponent mEN x the integral representation formula

1 c+ioo dz
(1 - t)~ = -2J Tm(z)(mt)-Z--;-

n c-ioo I
(c >0), (23)



270 WALTER SCHEMPP

where (rm)mEN x denotes the sequence of partial products in the classical
Gauss representation of the gamma function r. The integral formula (23) is
particularly adequate for a treatment of the pointwise convergence behaviour
of the cardinal logarithmic spline functions (Sm)mENx on the open half-line
IR ~ (cf. Section 7).

From our point of view the main difference between the cardinal
logarithmic and the cardinal exponential case may be described roughly as
follows: The identity (23) gives rise to a contour integral representation for
the cardinal logarithmic splines Sm (m E IN X) that involves a line integral
along the boundary of a closed vertical strip containing in its interior the
imaginary axis of (: whereas the contour of integration L o occurring in the
integral representation formula (14) of the cardinal exponential spline inter
polants sm forms the boundary of a closed vertical strip in the open right,
resp. left, half-plane of C.

Another kind of contour integral representation of the basis splines
bmE ism(lR; ;Z) using rational integrands has been established by
Meinardus [4]. For each point x E IR let Yx denote a circuit in the complex
plane (: such that the topological index with respect to yx verifies the con
ditions

IndYx(n) = I

IndyJn) = 0

for [xl < n ~ m + I,

for n ~ [x J and m + I < n,
(n E Z)

([ J= Gauss symbol). Then we have the identity

bm(x) = m +.1 J' (z _x)m dz
2m Yx OO';k.;m+ I (z - k)

(x E IR) (24)

for all m E IN x. The contour integral representation formula (24) allows to
deduce the basic properties of the spline functions (bm)mENX in a simple way
and may be easily extended to the case of non-equidistant bi-infinite knot
sequences.

For a survey of the contour integral representations of cardinal splines and
more details the reader is referred to [10 J.

ACKNOWLEDGMENTS

The author is grateful to Professor I. J. Schoenberg (University of Madison/Wisconsin)
who generously helped him by providing useful comments. His thanks also go to the Sonder
forschungsbereich 72 of the University of Bonn for financial support.



CARDINAL SPLINES AND LAPLACE TRANSFORM

REFERENCES

271

I. H. B. CURRY AND I. J. SCHOENBERG, On P61ya frequency functions. IV. The fundamental
spline functions and their limits, J. Analyse Math. 17 (1966), 71-107.

2. C. DE BOOR, "A Practical Guide to Splines," Applied Mathematical Sciences, Vol. 27,
Springer-Verlag, New York/Heidelberg/Berlin, 1978.

3. T. N. E. GREVILLE, I. J. SCHOENBERG, AND A. SHARMA, The spline interpolation of
sequences satisfying a linear recurrence relation, J. Approx. Theory 17 (1976),200-221.

4. G. MEINARDUS, Bemerkungen zur Theorie der B-Splines, in "Spline-Funktionen, Vortrage
und Aufsatze" (K. Bohmer, G. Meinardus, and W. Schempp, Eds.), Bibliographisches
Institut, Mannheim/Wien/Ziirich, 1974.

5. W. SCHEMPP, On the convergence of cardinal logarithmic splines, J. Approx. Theory 23
(1978), 108-112.

6. W. SCHEMPP, Approximation und Transformationsmethoden, in "Numerische Methoden
der Approximationstheorie," Vol. 4 (L. Collatz, G. Meinardus, and H. Werner, Eds.),
Birkhauser-Verlag, Basel/Boston/Stuttgart, 1978.

7. W. SCHEMPP, A note on the Newman-Schoenberg phenomenon, Math. Z. 167 (1979),
1-6.

8. W. SCHEMPP, Approximation und Transformationsmethoden II, in "Numerische
Methoden der Approximationstheorie," Vol. 5 (L. Collatz, G. Meinardus, and H. Werner,
Eds.), Birkhauser-Verlag, Basel/Boston/Stuttgart, 1979.

9. W. SCHEMPP, Cardinal logarithmic splines and Mellin transform, J. Approx. Theory 31
(1981),279-287.

'10. W. SCHEMPP, Complex contour integral representation of cardinal spline functions. With
a preface by I. J. Schoenberg, to appear.

II. I. J. SCHOENBERG, Cardinal interpolation and spline functions. IV. The exponential Euler
splines, in "Linear Operators and Approximation I" (P. L. Butzer, J. P. Kahane, and B.
Sz.-Nagy, Eds.), Birkhauser-Verlag, Basel/Boston/Stuttgart, 1972.

12. I. J. SCHOENBERG, "Cardinal Spline Interpolation," Regional Conference Series in
Applied Mathematics, Vol. 12, Society for Industrial and Applied Mathematics,
Philadelphia, Pennsylvania 1973.


